
Factorization-based Sparse Solvers and

Preconditioners

X. Sherry Li

xsli@lbl.gov

Lawrence Berkeley National Laboratory

Ichitaro Yamazaki, Esmond Ng, LBNL

Meiyue Shao, Fudan University, China

SciDAC 2009, June 17, 2009, San Diego

Outline

• Hybrid solver based on domain decomposition

 direct + iterative

• Incomplete LU factorization preconditioner

 Modify SuperLU, new dropping heuristics

• Funded through three SciDAC programs

 TOPS

Towards Optimal Petascale Simulations

 CEMM

Center for Extended MHD Modeling

 ComPASS

Community Petascale Project for Accelerator Science and

Simulation

2

Motivation

• Many large-scale numerical modeling codes require solution

of sparse linear and eigen systems

This talk

 Extended MHD equations in fusion plasma modeling

 Maxwell equations in accelerator structure design

• Parallelism favors iterative solvers, ill-conditioning and

indefinitness favors direct solvers

 Iterative solvers scale well (mainly matrix-vector multiplication),

but may suffer from slow convergence, and require robust

preconditioners

 Direct solvers need more memory, even more so for flops, less

scalable because of high degree of task/data dependency

• Bridging the gap: use direct solver techniques as much as

possible in the internal part of the iterative solver

3

Hybrid solver

• Schur complement method

= iterative substructuring method

= non-overlapping domain decomposition

4

Algebraic view

1. Reorder into 2x2 block system, A11 is block diagonal

2. Form the Schur complement

S = interface (separator) variables

3. Compute the solution

5

2

1

2

1

2221

1211

b

b

x

x

AA

AA

)(

)(

2121

1

111

1

1

11212

1

2

 x – AbAx

 b A – AbSx

-

-

111111

12

1

1121112212

1

112122

 where ULA

)A (L)A – (U A A A – A AS
-TT-T-

• Two subdomain case

Structural analysis view

6

1
2

InterfaceInterface""

interior""

)()(

)()(

)(

I

i

AA

AA
A

i

II

i

iI

i

Ii

i

iii

)2()1()2()1(

)2()2(

)1()1(

matrix block Assembled 1.

IIIIiIiI

Iiii

Iiii

AAAA

AA

AA

A

)2()1(

)(1)()()()(

)2()1(

 complementSchur Assembled

 :scomplementSchur Local

tly,independen and ofn eliminatiodirect Perform 2.

SSS

AAAAS

AA

i

Ii

i

ii

i

iI

i

II

i

Substructure contribution:

Solving the Schur complement system

• Proposition [Smith/Bjorstad/Gropp’96]

For an SPD matrix, condition number of a Schur complement is no

larger than that of the original matrix.

• S is much reduced in size, better conditioned, but denser

 solvable with preconditioned iterative solver

• Two approaches

1. Explicit S (e.g., HIPS [Henon/Saad’08], and ours)

 can construct general algebraic preconditioner, e.g. ILU(S),

must preserve sparsity of S

2. Implicit S (e.g. [Giraud/Haidary/Pralet’09])

 preconditioner construction is restricted

 E.g., additive Schwarz preconditioner

7

)3()2()1(SSSS

1)3(1)2(1)1(

 SSSM

• Nested dissection, graph partitioning

• Memory requirement: fill is restricted within

 “small” diagonal blocks of A11, and

 ILU(S), sparsity can be enforced

• Two levels of parallelism: can use many processors

 multiple processors for each subdomain direct solution

 only need modest level of parallelism from direct solver

 multiple processors for interface iterative solution

Parallelism – multilevel partitioning

8

22

)(

12

)2(

12

)1(

12

)(

12

)(

11

)2(

12

)2(

11

)1(

12

)1(

11

2221

1211

AAAA

AA

AA

AA

AA

AA

k

kk

Previous work (recent): HIPS – Hybrid Iterative Parallel

Solver [P. Henon and Y. Saad, 2008]

• Based on Hierarchical Interface Decomposition

• Major limitation: number of processors = number of

subdomains

• Dilemma: large number of subdomains needed for parallelism,

small number of subdomains needed for convergence

9

Our implementation

• Flexibility and robustness

• multiple processors to solve each subdomain

• subset of processors to solve the Schur complement system

• less restriction on sparsity pattern of ILU(S)

• High performance

 usage and extension of state-of-art software

ParMETIS, PT-SCOTCH, SuperLU, SuperLU_DIST, PETSc

 scalable computation of Schur complement

• parallel symbolic computation to set up data structure

• exploit dense blocks (supernodes) to improve efficiency

 ILU of sparsified Schur complement:

• parallel symbolic factorization for time efficiency

• no duplicate data for memory efficiency

10

dropping control to , 21

Application 1: Fusion plasma study

• SciDAC Center for Extended Magnetohydrodynamic Modeling

(CEMM), PI: S. Jardin, PPPL

• Develop simulation codes for studying the nonlinear

macroscopic dynamics of MHD-like phenomena in magnetized

fusion plasmas, and address critical issues facing burning

plasma experiments such as ITER

• Simulation code suite includes M3D-C1, NIMROD

11

R

Z

• At each = constant plane, scalar 2D data

is represented using 18 degree of freedom

quintic triangular finite elements Q18

• Coupling along toroidal direction

[S. Jardin]

Application 2: Accelerator cavity design

12

• Community Petascale Project for Accelerator Science and

Simulation (ComPASS), PI: P. Spentzouris, Fermilab

• Development of a comprehensive computational infrastructure

for accelerator modeling and optimization

• RF cavity: Maxwell equations in electromagnetic field

• FEM in frequency domain leads to large sparse eigenvalue

problem; needs to solve shifted linear systems

bMx MK 00

2

0)(

problem eigenvaluelinear

E Closed

Cavity

M

Open

Cavity

Waveguide BC

Waveguide BC

Waveguide BC

[L.-Q. Lee]

bx M W - i K)(

problem eigenvaluecomplex nonlinear

0

2

0

RF unit in ILC

Hybrid solver result: matrix211

• Fusion M3D-C1 code, extended MHD modeling (PPPL)

• dimension = 801,378

• drop tolerance: σ1=10-5 to preserve sparsity of S

• Two-level: fixed 8 subdomains

• Strong scaling: time & memory

13

Hybrid solver result: tdr190k

• Modeling particle accelerator (SLAC)

• dimension = 1,100,242

• drop tolerance: σ1=10-5 to enforce sparsity of S

• about half of the nonzeros are discarded

• Strong scaling: time & memory

14

Hybrid solver summary

• Our hybrid solver achieves convergence within 30 iterations

 Convergence “independent” of #procs

• Flexible in exploiting parallelism, more robust than HIPS

 Using 32 processors and beyond, HIPS does not converge within

1,000 unrestarted GMRES iterations

• Scales better than SuperLU_DIST, needs much less memory

• Future work

 Compare with “implicit Schur” approach

 Larger problems, larger processor count

15

Incomplete LU factorization preconditioner
• Modify SuperLU, new dropping heuristics

16

ILU preconditioner

• A very simplified view:

• Structure-based dropping: level of fill

 ILU(0), ILU(k)

 Rationale: the higher the level, the smaller the entries

 Separate symbolic factorization step to determine fill-in pattern

• Value-based fropping: drop truly small entries

 Fill-in pattern must be determined on-the-fly

• ILUTP [Saad]: among the most sophisticated, and (arguably)

robust

 “T” = threshold, “P” = pivoting

 Implementation akin to direct solver

• We use SuperLU code base to perform ILUTP

17

yiterativel)
~~

()
~~

(solve Then,

dconditione wellbemay)
~~

(small, |||| if ,
~~

11

1

bULAxUL

AULEEULA

SuperLU [Demmel/Eisenstat/Gilbert/Liu/Li ’99]

http://crd.lbl.gov/~xiaoye/SuperLU

18

• Left-looking, supernode

DONE NOT

TOUCHED
WORKING

U

L

A

panel

1. Sparsity ordering of columns

use graph of A’*A

2. Factorization

For each panel …

• Partial pivoting

• Symbolic fact.

• Num. fact. (BLAS 2.5)

3. Triangular solve

Primary dropping rule: S-ILU(tau)

• Similar to ILUTP, adapted to supernode

1. U-part:

2. L-part: retain supernode

• Compare with scalar ILU(tau)

 For 54 matrices, S-ILU+GMRES converged

with 47 cases, versus 43 with scalar

ILU+GMRES

 S-ILU +GMRES is 2.3x faster than scalar

ILU+GMRES

19

0set then ,)(:, If
 ijij ujAu

zero torowth - entire set the then ,):,(L if),:(:, Supernode itsitsL

i

Secondary dropping rule: S-ILU(tau,p)

• Control fill ratio with a user-desired upper bound

• Earlier work, column-based

 [Saad]: ILU(tau, p), at most p largest nonzeros allowed in each row

 [Gupta/George]: p adaptive for each column

May use interpolation to compute a threshold function, no sorting

• Our new scheme is “area-based”

 Define adaptive upper bound function

 More flexible, allow some columns to fill more, but limit overall

20

))(:,()(jAnnzjp

)):1(:,(/)):1(:,()(

j toup 1 colum from ratio fillat Look

jAnnzjFnnzjfr

:

],1[)(jf

)()(such that largest, ponly retain , exceeds)(If jfjfrf(j)jfr

):1(:, jF

j+1

Experiments: GMRES + ILU

• Use restarted GMRES with our ILU as a right preconditioner

• Size of Krylov subspace set to 50

• Stopping criteria:

21

PbyULPA - 1)
~~

(Solve

iterations 1000 and 10
2

8

2
 b x-Ab k

S-ILU for extended MHD calculation (fusion)

• Opteron 2.2 GHz (jacquard at NERSC), one processor

• ILU parameters: drop_tol = 1e-4, gamma = 10

• Up to 9x smaller fill ratio, and 10x faster

22

Problems order Nonzeros

(millions)

ILU

time fill-ratio

GMRES

time iters

SuperLU

time fill-ratio

matrix31 17,298 2.7 m 8.2 2.7 0.6 9 33.3 13.1

matrix41 30,258 4.7 m 18.6 2.9 1.4 11 111.1 17.5

matrix61 66,978 10.6 m 54.3 3.0 7.3 20 612.5 26.3

matrix121 263,538 42.5 m 145.2 1.7 47.8 45 fail -

matrix181 589,698 95.2 m 415.0 1.7 716.0 289 fail -

S-ILU comprehensive tests

• 54 matrices: Matrix Market, UF Sparse Matrix, fusion

• Performance profile of fill ratio – fraction of the problems a solver

could solve within a fill ratio of X

• Performance profile of runtime – fraction of the problems a solver

could solve within a multiple of X of the best solution time among all

the solvers

• Conclusion:

 New area-based heuristic is much more robust than column-based one

 ILU(tau) is reliable; but need secondary dropping to control memory 23

Compare with ILUPACK [Bolhoefer et al.]

24

• ILUPACK: inverse-based multilevel method

• Parameters:

 S-ILU:

 ILUPACK:

• 37 test matrices, one processor Xeon 2.5 GHz

)(ordering COLAMD ,10 based,-area ,10 4 AAG T

)(ordering AMD ,10 ,5 ,10 4 AAG T

Compare with direct solver SuperLU

25

• Works for over 60% of the comprehensive test problems (54)

When it works, it is much faster than direct solver

ILU summary

• New supernodal, area-based dropping is more reliable and

faster than classical column-based ILUTP

 Fusion matrices: 9x reduction in fill, 10x faster than LU

• Competitive with an inverse-based multilevel ILU method:

ILUPACK

• Available in forthcoming release of SuperLU v 4.0

• Future work: parallel ILU in SuperLU_DIST

26

• Sparse matrix factorization is very hard to scale up because of

high degree of dependency, but moderate parallelism is

achievable. It can be effectively used to improve numerics

for iterative methods.

27

